171 research outputs found

    Talk to the Virtual Hands: Self-Animated Avatars Improve Communication in Head-Mounted Display Virtual Environments

    Get PDF
    Background When we talk to one another face-to-face, body gestures accompany our speech. Motion tracking technology enables us to include body gestures in avatar-mediated communication, by mapping one's movements onto one's own 3D avatar in real time, so the avatar is self-animated. We conducted two experiments to investigate (a) whether head-mounted display virtual reality is useful for researching the influence of body gestures in communication; and (b) whether body gestures are used to help in communicating the meaning of a word. Participants worked in pairs and played a communication game, where one person had to describe the meanings of words to the other. Principal Findings In experiment 1, participants used significantly more hand gestures and successfully described significantly more words when nonverbal communication was available to both participants (i.e. both describing and guessing avatars were self-animated, compared with both avatars in a static neutral pose). Participants ‘passed’ (gave up describing) significantly more words when they were talking to a static avatar (no nonverbal feedback available). In experiment 2, participants' performance was significantly worse when they were talking to an avatar with a prerecorded listening animation, compared with an avatar animated by their partners' real movements. In both experiments participants used significantly more hand gestures when they played the game in the real world. Conclusions Taken together, the studies show how (a) virtual reality can be used to systematically study the influence of body gestures; (b) it is important that nonverbal communication is bidirectional (real nonverbal feedback in addition to nonverbal communication from the describing participant); and (c) there are differences in the amount of body gestures that participants use with and without the head-mounted display, and we discuss possible explanations for this and ideas for future investigation

    Is my hand connected to my body? The impact of body continuity and arm alignment on the virtual hand illusion

    Get PDF
    When a rubber hand is placed on a table top in a plausible position as if part of a person"s body, and is stroked synchronously with the person"s corresponding hidden real hand, an illusion of ownership over the rubber hand can occur (Botvinick and Cohen 1998). A similar result has been found with respect to a virtual hand portrayed in a virtual environment, a virtual hand illusion (Slater et al. 2008). The conditions under which these illusions occur have been the subject of considerable study. Here we exploited the flexibility of virtual reality to examine four contributory factors: visuo-tactile synchrony while stroking the virtual and the real arms, body continuity, alignment between the real and virtual arms, and the distance between them. We carried out three experiments on a total of 32 participants where these factors were varied. The results show that the subjective illusion of ownership over the virtual arm and the time to evoke this illusion are highly dependent on synchronous visuo-tactile stimulation and on connectivity of the virtual arm with the rest of the virtual body. The alignment between the real and virtual arms and the distance between these were less important. It was found that proprioceptive drift was not a sensitive measure of the illusion, but was only related to the distance between the real and virtual arms

    Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

    Get PDF
    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ~32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ~6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.National Institutes of Health (U.S.) (NIH R01-EY011289-27)National Institutes of Health (U.S.) (NIH R01-EY013178-12)National Institutes of Health (U.S.) (NIH R44-EY022864-01)National Institutes of Health (U.S.) (NIH R01-CA075289-16)United States. Air Force Office of Scientific Research (AFOSR FA9550-10-1-0551)United States. Air Force Office of Scientific Research (AFOSR FA9550-12-1-0499

    Rapid and Sensitive Lentivirus Vector-Based Conditional Gene Expression Assay to Monitor and Quantify Cell Fusion Activity

    Get PDF
    Cell-to-cell fusion is involved in multiple fundamental biological processes. Prominent examples include osteoclast and giant cell formation, fertilization and skeletal myogenesis which involve macrophage, sperm-egg and myoblast fusion, respectively. Indeed, the importance of cell fusion is underscored by the wide range of homeostatic as well as pathologic processes in which it plays a key role. Therefore, rapid and sensitive systems to trace and measure cell fusion events in various experimental systems are in demand. Here, we introduce a bipartite cell fusion monitoring system based on a genetic switch responsive to the site-specific recombinase FLP. To allow flexible deployment in both dividing as well as non-dividing cell populations, inducer and reporter modules were incorporated in lentivirus vector particles. Moreover, the recombinase-inducible transcription units were designed in such a way as to minimize basal activity and chromosomal position effects in the “off” and “on” states, respectively. The lentivirus vector-based conditional gene expression assay was validated in primary human mesenchymal stem cells and in a differentiation model based on muscle progenitor cells from a Duchenne muscular dystrophy patient using reporter genes compatible with live- and single-cell imaging and with whole population measurements. Using the skeletal muscle cell differentiation model, we showed that the new assay displays low background activity, a 2-log dynamic range, high sensitivity and is amenable to the investigation of cell fusion kinetics. The utility of the bipartite cell fusion monitoring system was underscored by a study on the impact of drug- and RNAi-mediated p38 MAPK inhibition on human myocyte differentiation. Finally, building on the capacity of lentivirus vectors to readily generate transgenic animals the present FLP-inducible system should be adaptable, alone or together with Cre/loxP-based assays, to cell lineage tracing and conditional gene manipulation studies in vivo

    Online Learning for 3D LiDAR-based Human Detection: Experimental Analysis of Point Cloud Clustering and Classification Methods

    Get PDF
    This paper presents a system for online learning of human classifiers by mobile service robots using 3D~LiDAR sensors, and its experimental evaluation in a large indoor public space. The learning framework requires a minimal set of labelled samples (e.g. one or several samples) to initialise a classifier. The classifier is then retrained iteratively during operation of the robot. New training samples are generated automatically using multi-target tracking and a pair of "experts" to estimate false negatives and false positives. Both classification and tracking utilise an efficient real-time clustering algorithm for segmentation of 3D point cloud data. We also introduce a new feature to improve human classification in sparse, long-range point clouds. We provide an extensive evaluation of our the framework using a 3D LiDAR dataset of people moving in a large indoor public space, which is made available to the research community. The experiments demonstrate the influence of the system components and improved classification of humans compared to the state-of-the-art

    Androgen Receptor Functional Analyses by High Throughput Imaging: Determination of Ligand, Cell Cycle, and Mutation-Specific Effects

    Get PDF
    Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors.We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions.HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations

    Association of Carotid Plaque Lp-PLA2 with Macrophages and Chlamydia pneumoniae Infection among Patients at Risk for Stroke

    Get PDF
    BACKGROUND: We previously showed that the burden of Chlamydia pneumoniae in carotid plaques was significantly associated with plaque interleukin (IL)-6, and serum IL-6 and C-reactive protein (CRP), suggesting that infected plaques contribute to systemic inflammatory markers in patients with stroke risk. Since lipoprotein-associated phospholipase A2 (Lp-PLA(2)) mediates inflammation in atherosclerosis, we hypothesized that serum Lp-PLA(2) mass and activity levels and plaque Lp-PLA(2) may be influenced by plaque C. pneumoniae infection. METHODOLOGY/PRINCIPAL FINDINGS: Forty-two patients underwent elective carotid endarterectomy. Tissue obtained at surgery was stained by immunohistochemistry for Lp-PLA(2) grade, macrophages, IL-6, C. pneumoniae and CD4+ and CD8+ cells. Serum Lp-PLA(2) activity and mass were measured using the colorimetric activity method (CAM) and ELISA, respectively. Serum homocysteine levels were measured by HPLC. Eleven (26.2%) patients were symptomatic with transient ischemic attacks. There was no correlation between patient risk factors (smoking, coronary artery disease, elevated cholesterol, diabetes, obesity, hypertension and family history of genetic disorders) for atherosclerosis and serum levels or plaque grade for Lp-PLA(2). Plaque Lp-PLA(2) correlated with serum homocysteine levels (p = 0.013), plaque macrophages (p<0.01), and plaque C. pneumoniae (p<0.001), which predominantly infected macrophages, co-localizing with Lp-PLA(2). CONCLUSIONS: The significant association of plaque Lp-PLA(2) with plaque macrophages and C. pneumoniae suggests an interactive role in accelerating inflammation in atherosclerosis. A possible mechanism for C. pneumoniae in the atherogenic process may involve infection of macrophages that induce Lp-PLA(2) production leading to upregulation of inflammatory mediators in plaque tissue. Additional in vitro and in vivo research will be needed to advance our understanding of specific C. pneumoniae and Lp-PLA(2) interactions in atherosclerosis

    Chronic hepatosplenomegaly in African school children: a common but neglected morbidity associated with schistosomiasis and malaria.

    Get PDF
    Chronic hepatosplenomegaly, which is known to have a complex aetiology, is common amongst children who reside in rural areas of sub-Saharan Africa. Two of the more common infectious agents of hepatosplenomegaly amongst these children are malarial infections and schistosomiasis. The historical view of hepatosplenomegaly associated with schistosomiasis is that it is caused by gross periportal fibrosis and resulting portal hypertension. The introduction of ultrasound examinations into epidemiology studies, used in tandem with clinical examination, showed a dissociation within endemic communities between presentation with hepatosplenomegaly and ultrasound periportal fibrosis, while immuno-epidemiological studies indicate that rather than the pro-fibrotic Th2 response that is associated with periportal fibrosis, childhood hepatosplenomegaly without ultrasound-detectable fibrosis is associated with a pro-inflammatory response. Correlative analysis has shown that the pro-inflammatory response is also associated with chronic exposure to malarial infections and there is evidence of exacerbation of hepatosplenomegaly when co-exposure to malaria and schistosomiasis occurs. The common presentation with childhood hepatosplenomegaly in rural communities means that it is an important example of a multi-factorial disease and its association with severe and subtle morbidities underlies the need for well-designed public health strategies for tackling common infectious diseases in tandem rather than in isolation
    corecore